thefitnessroad Secret of getting ahead is getting starteD

17May/140

IGF-1, testosterone and (GH) human growth hormone are hormones to play a effective role in muscle devoplment and growth

kai-greene-bodybuilder

kai-greene-bodybuilder

Bodybuilders of early  times used to train with short rest periods between sets as less rest  with intense training leads to increases in GH(human growth hormone) and testosterone.

Earlier people used to feel that testosterone increases muscle mass as it stimulates fractional muscle protein synthesis added to it was increase in muscle anabolism associates  with increase in expression of mRNA IGF-I . Now we will discuss some Testosterone effects of muscle mass in body :

1. Testosterone has anabolic effects of  on muscle mass and is also concentration dependent

2. Testosterone stimulates satellite cell activity and IGF-I amount in body skeletal muscle.

3. Testosterone results in increases in GH secretion , as GH plays an effective role in muscle growth and stimulates the release of GH from the anterior pituitary gland

4. Testosterone increases  androgen receptor number as level of it being released depends on exercise intensity .

 

 

jay-cutler-and-phil-heath-bodybuilder

jay-cutler-and-phil-heath-bodybuilder

During 90 minutes workout session no changes in GH  , IGF-1 and testosterone concentrations were observed also no influence of training is measured on the anabolic hormones as Human growth hormone shows increase after 30 minutes of exercise but returns to base value in sessions of 90 minutes. Acute anabolic hormones have there little effect on muscle growth but have little to do with muscle hypertrophy , as the interpretation formed is post exercise hormone levels have  little effect on muscular hypertrophy

Also for human growth hormone has a fiber CSA increased in the trained leg but no changes were observed in fiber CSA in the untrained part of leg. Researchers have said that muscle hypertrophy takes place without increases in anabolic hormone concentration level . We will now discuss some of the effects of Human Growth Hormone(GH) 0n muscle mass :

1. GH  triggers fat metabolism for energy use in the process of muscle growth

2. GH stimulates intake of amino acids in protein requring muscle in body

3. GH work is to increase both body and muscle protein synthesis

4. GH also works to increase lean body mass

5. GH results in decreased fat mass.

6. Human Growth Hormone stimulates production which helps to circulate IGF-1 concentration .

arnold-schwarzenegger-bodybuilder

arnold-schwarzenegger-bodybuilder

7. Human growth hormone shows increase after 30 minutes of exercise but returns to base value in sessions of 90 minutes

8. Human Growth Hormone also helps to stimulate IGF-1 production in other tissue which include  skeletal muscle.

9. GH helps to increase a fiber CSA in trained body parts to increase muscle growth .

With this we can conclude that IGF1 , Testosterone and human growth hormone are important and play an effective role for muscle hypertrophy and strength

GH helps to trigger fat metabolism for energy use in the muscle growth process. As well, GH stimulates the uptake and incorporation of amino acids into protein in skeletal muscle. In humans, GH administration is known to increase both whole-body and muscle protein synthesis and almost unequivocally to increase lean body mass and decreased fat mass. Human growth hormone also stimulates hepatic production of circulating IGF-1 concentrations and may also stimulate IGF-1 production in other tissue such as skeletal muscle. So it’s well established that testosterone and GH are important for muscle hypertrophy and strength, but what about the acute increases that occur during resistance exercise? Are they important?  - See more at: http://www.flexonline.com/nutrition/hormonal-increases#sthash.wd9q03Pd.dpuf
Many of the great bodybuilders in the early ’90s trained with short rest periods between sets, as earlier research found that short rest periods in conjunction with intense training led to significant increases in GH and testosterone. The anabolic effects of testosterone on muscle mass are dose and concentration dependent. The prevalent dogma for the past 50 years has been that testosterone increases muscle mass by stimulating fractional muscle protein synthesis. Testosterone administration also results in increases in GH secretion, androgen receptor number, satellite cell activity, and increased IGF-I expression in skeletal muscle. It’s also been demonstrated that the increase in muscle anabolism is associated with an increase in the expression of intramuscular mRNA IGF-I. GH is also highly recognized for its role in muscle growth. Resistance exercise stimulates the release of GH from the anterior pituitary gland, with released levels being very dependent on exercise intensity. - See more at: http://www.flexonline.com/nutrition/hormonal-increases#sthash.wd9q03Pd.dpuf
Many of the great bodybuilders in the early ’90s trained with short rest periods between sets, as earlier research found that short rest periods in conjunction with intense training led to significant increases in GH and testosterone. The anabolic effects of testosterone on muscle mass are dose and concentration dependent. The prevalent dogma for the past 50 years has been that testosterone increases muscle mass by stimulating fractional muscle protein synthesis. Testosterone administration also results in increases in GH secretion, androgen receptor number, satellite cell activity, and increased IGF-I expression in skeletal muscle. It’s also been demonstrated that the increase in muscle anabolism is associated with an increase in the expression of intramuscular mRNA IGF-I. GH is also highly recognized for its role in muscle growth. Resistance exercise stimulates the release of GH from the anterior pituitary gland, with released levels being very dependent on exercise intensity. - See more at: http://www.flexonline.com/nutrition/hormonal-increases#sthash.wd9q03Pd.dpuf

zznxMany of the great bodybuilders in the early ’90s trained with short rest periods between sets, as earlier research found that short rest periods in conjunction with intense training led to significant increases in GH and testosterone. The anabolic effects of testosterone on muscle mass are dose and concentration dependent. The prevalent dogma for the past 50 years has been that testosterone increases muscle mass by stimulating fractional muscle protein synthesis. Testosterone administration also results in increases in GH secretion, androgen receptor number, satellite cell activity, and increased IGF-I expression in skeletal muscle. It’s also been demonstrated that the increase in muscle anabolism is associated with an increase in the expression of intramuscular mRNA IGF-I. GH is also highly recognized for its role in muscle growth. Resistance exercise stimulates the release of GH from the anterior pituitary gland, with released levels being very dependent on exercise intensity. GH helps to trigger fat metabolism for energy use in the muscle growth process. As well, GH stimulates the uptake and incorporation of amino acids into protein in skeletal muscle. In humans, GH administration is known to increase both whole-body and muscle protein synthesis and almost unequivocally to increase lean body mass and decreased fat mass. Human growth hormone also stimulates hepatic production of circulating IGF-1 concentrations and may also stimulate IGF-1 production in other tissue such as skeletal muscle. So it’s well established that testosterone and GH are important for muscle hypertrophy and strength, but what about the acute increases that occur during resistance exercise? Are they important?

Researchers at the Exercise Metabolism Group at McMaster University reported that muscle hypertrophy took place without acute increases in anabolic hormone concentrations. Ten healthy young male subjects performed unilateral resistance training for eight weeks (three days/week). Unilateral resistance exercise is basically where you train one arm or leg, while the other arm or leg is used as a control or untrained muscle. Exercises performed in the study were knee extensions and leg presses performed at 80–90% of the subject’s single-repetition maximum (1RM). Blood samples were collected before, immediately a? er, 30, 60, 90, and 120 minutes post-exercise. The first training bout and the last training bout were analyzed for total testosterone, free-testosterone, GH, and insulin-like growth factor-1, along with other hormones. Thigh muscle cross-sectional area (CSA) and muscle fiber CSA by biopsy (vastus lateralis) were also measured preand post-training.

Acutely, no changes in GH, testosterone, or IGF-1 concentrations were observed in the 90-minute period following exercise and there was no influence of training on the anabolic hormones measured. Human growth hormone did show a moderate increase 30 minutes post-exercise, but returned to baseline values by 90 minutes. Training-induced increases were observed in type IIb and IIa muscle fiber CSA. No changes were observed in fiber CSA in the untrained leg. Whole-muscle CSA increased in the trained leg and remained unchanged in the untrained leg.

In conclusion, unilateral training induced local muscle hypertrophy only in the exercised limb, which occurred in the absence of testosterone, GH, or IGF-1 circulating levels. To further support the evidence that acute anabolic hormones have little impact on muscle growth, an excellent review was published in Medicine in Sports Science and Exercise, which further supports the notion, that acute anabolic hormones have little to do with muscle hypertrophy. The reviewers suggested that the interpretation of the current literature to support that post-exercise hormone levels have an effect on the extent of muscular hypertrophy is lacking.

- See more at: http://www.flexonline.com/nutrition/hormonal-increases#sthash.wd9q03Pd.dpuf

Many of the great bodybuilders in the early ’90s trained with short rest periods between sets, as earlier research found that short rest periods in conjunction with intense training led to significant increases in GH and testosterone. The anabolic effects of testosterone on muscle mass are dose and concentration dependent. The prevalent dogma for the past 50 years has been that testosterone increases muscle mass by stimulating fractional muscle protein synthesis. Testosterone administration also results in increases in GH secretion, androgen receptor number, satellite cell activity, and increased IGF-I expression in skeletal muscle. It’s also been demonstrated that the increase in muscle anabolism is associated with an increase in the expression of intramuscular mRNA IGF-I. GH is also highly recognized for its role in muscle growth. Resistance exercise stimulates the release of GH from the anterior pituitary gland, with released levels being very dependent on exercise intensity. GH helps to trigger fat metabolism for energy use in the muscle growth process. As well, GH stimulates the uptake and incorporation of amino acids into protein in skeletal muscle. In humans, GH administration is known to increase both whole-body and muscle protein synthesis and almost unequivocally to increase lean body mass and decreased fat mass. Human growth hormone also stimulates hepatic production of circulating IGF-1 concentrations and may also stimulate IGF-1 production in other tissue such as skeletal muscle. So it’s well established that testosterone and GH are important for muscle hypertrophy and strength, but what about the acute increases that occur during resistance exercise? Are they important?

Researchers at the Exercise Metabolism Group at McMaster University reported that muscle hypertrophy took place without acute increases in anabolic hormone concentrations. Ten healthy young male subjects performed unilateral resistance training for eight weeks (three days/week). Unilateral resistance exercise is basically where you train one arm or leg, while the other arm or leg is used as a control or untrained muscle. Exercises performed in the study were knee extensions and leg presses performed at 80–90% of the subject’s single-repetition maximum (1RM). Blood samples were collected before, immediately a? er, 30, 60, 90, and 120 minutes post-exercise. The first training bout and the last training bout were analyzed for total testosterone, free-testosterone, GH, and insulin-like growth factor-1, along with other hormones. Thigh muscle cross-sectional area (CSA) and muscle fiber CSA by biopsy (vastus lateralis) were also measured preand post-training.

Acutely, no changes in GH, testosterone, or IGF-1 concentrations were observed in the 90-minute period following exercise and there was no influence of training on the anabolic hormones measured. Human growth hormone did show a moderate increase 30 minutes post-exercise, but returned to baseline values by 90 minutes. Training-induced increases were observed in type IIb and IIa muscle fiber CSA. No changes were observed in fiber CSA in the untrained leg. Whole-muscle CSA increased in the trained leg and remained unchanged in the untrained leg.

In conclusion, unilateral training induced local muscle hypertrophy only in the exercised limb, which occurred in the absence of testosterone, GH, or IGF-1 circulating levels. To further support the evidence that acute anabolic hormones have little impact on muscle growth, an excellent review was published in Medicine in Sports Science and Exercise, which further supports the notion, that acute anabolic hormones have little to do with muscle hypertrophy. The reviewers suggested that the interpretation of the current literature to support that post-exercise hormone levels have an effect on the extent of muscular hypertrophy is lacking.

- See more at: http://www.flexonline.com/nutrition/hormonal-increases#sthash.wd9q03Pd.dpuf

Many of the great bodybuilders in the early ’90s trained with short rest periods between sets, as earlier research found that short rest periods in conjunction with intense training led to significant increases in GH and testosterone. The anabolic effects of testosterone on muscle mass are dose and concentration dependent. The prevalent dogma for the past 50 years has been that testosterone increases muscle mass by stimulating fractional muscle protein synthesis. Testosterone administration also results in increases in GH secretion, androgen receptor number, satellite cell activity, and increased IGF-I expression in skeletal muscle. It’s also been demonstrated that the increase in muscle anabolism is associated with an increase in the expression of intramuscular mRNA IGF-I. GH is also highly recognized for its role in muscle growth. Resistance exercise stimulates the release of GH from the anterior pituitary gland, with released levels being very dependent on exercise intensity. GH helps to trigger fat metabolism for energy use in the muscle growth process. As well, GH stimulates the uptake and incorporation of amino acids into protein in skeletal muscle. In humans, GH administration is known to increase both whole-body and muscle protein synthesis and almost unequivocally to increase lean body mass and decreased fat mass. Human growth hormone also stimulates hepatic production of circulating IGF-1 concentrations and may also stimulate IGF-1 production in other tissue such as skeletal muscle. So it’s well established that testosterone and GH are important for muscle hypertrophy and strength, but what about the acute increases that occur during resistance exercise? Are they important?

Researchers at the Exercise Metabolism Group at McMaster University reported that muscle hypertrophy took place without acute increases in anabolic hormone concentrations. Ten healthy young male subjects performed unilateral resistance training for eight weeks (three days/week). Unilateral resistance exercise is basically where you train one arm or leg, while the other arm or leg is used as a control or untrained muscle. Exercises performed in the study were knee extensions and leg presses performed at 80–90% of the subject’s single-repetition maximum (1RM). Blood samples were collected before, immediately a? er, 30, 60, 90, and 120 minutes post-exercise. The first training bout and the last training bout were analyzed for total testosterone, free-testosterone, GH, and insulin-like growth factor-1, along with other hormones. Thigh muscle cross-sectional area (CSA) and muscle fiber CSA by biopsy (vastus lateralis) were also measured preand post-training.

Acutely, no changes in GH, testosterone, or IGF-1 concentrations were observed in the 90-minute period following exercise and there was no influence of training on the anabolic hormones measured. Human growth hormone did show a moderate increase 30 minutes post-exercise, but returned to baseline values by 90 minutes. Training-induced increases were observed in type IIb and IIa muscle fiber CSA. No changes were observed in fiber CSA in the untrained leg. Whole-muscle CSA increased in the trained leg and remained unchanged in the untrained leg.

In conclusion, unilateral training induced local muscle hypertrophy only in the exercised limb, which occurred in the absence of testosterone, GH, or IGF-1 circulating levels. To further support the evidence that acute anabolic hormones have little impact on muscle growth, an excellent review was published in Medicine in Sports Science and Exercise, which further supports the notion, that acute anabolic hormones have little to do with muscle hypertrophy. The reviewers suggested that the interpretation of the current literature to support that post-exercise hormone levels have an effect on the extent of muscular hypertrophy is lacking.

- See more at: http://www.flexonline.com/nutrition/hormonal-increases#sthash.wd9q03Pd.dpuf

Many of the great bodybuilders in the early ’90s trained with short rest periods between sets, as earlier research found that short rest periods in conjunction with intense training led to significant increases in GH and testosterone. The anabolic effects of testosterone on muscle mass are dose and concentration dependent. The prevalent dogma for the past 50 years has been that testosterone increases muscle mass by stimulating fractional muscle protein synthesis. Testosterone administration also results in increases in GH secretion, androgen receptor number, satellite cell activity, and increased IGF-I expression in skeletal muscle. It’s also been demonstrated that the increase in muscle anabolism is associated with an increase in the expression of intramuscular mRNA IGF-I. GH is also highly recognized for its role in muscle growth. Resistance exercise stimulates the release of GH from the anterior pituitary gland, with released levels being very dependent on exercise intensity. GH helps to trigger fat metabolism for energy use in the muscle growth process. As well, GH stimulates the uptake and incorporation of amino acids into protein in skeletal muscle. In humans, GH administration is known to increase both whole-body and muscle protein synthesis and almost unequivocally to increase lean body mass and decreased fat mass. Human growth hormone also stimulates hepatic production of circulating IGF-1 concentrations and may also stimulate IGF-1 production in other tissue such as skeletal muscle. So it’s well established that testosterone and GH are important for muscle hypertrophy and strength, but what about the acute increases that occur during resistance exercise? Are they important?

Researchers at the Exercise Metabolism Group at McMaster University reported that muscle hypertrophy took place without acute increases in anabolic hormone concentrations. Ten healthy young male subjects performed unilateral resistance training for eight weeks (three days/week). Unilateral resistance exercise is basically where you train one arm or leg, while the other arm or leg is used as a control or untrained muscle. Exercises performed in the study were knee extensions and leg presses performed at 80–90% of the subject’s single-repetition maximum (1RM). Blood samples were collected before, immediately a? er, 30, 60, 90, and 120 minutes post-exercise. The first training bout and the last training bout were analyzed for total testosterone, free-testosterone, GH, and insulin-like growth factor-1, along with other hormones. Thigh muscle cross-sectional area (CSA) and muscle fiber CSA by biopsy (vastus lateralis) were also measured preand post-training.

Acutely, no changes in GH, testosterone, or IGF-1 concentrations were observed in the 90-minute period following exercise and there was no influence of training on the anabolic hormones measured. Human growth hormone did show a moderate increase 30 minutes post-exercise, but returned to baseline values by 90 minutes. Training-induced increases were observed in type IIb and IIa muscle fiber CSA. No changes were observed in fiber CSA in the untrained leg. Whole-muscle CSA increased in the trained leg and remained unchanged in the untrained leg.

In conclusion, unilateral training induced local muscle hypertrophy only in the exercised limb, which occurred in the absence of testosterone, GH, or IGF-1 circulating levels. To further support the evidence that acute anabolic hormones have little impact on muscle growth, an excellent review was published in Medicine in Sports Science and Exercise, which further supports the notion, that acute anabolic hormones have little to do with muscle hypertrophy. The reviewers suggested that the interpretation of the current literature to support that post-exercise hormone levels have an effect on the extent of muscular hypertrophy is lacking.

- See more at: http://www.flexonline.com/nutrition/hormonal-increases#sthash.wd9q03Pd.dpuf

Comments (0) Trackbacks (0)

No comments yet.


Leave a comment

No trackbacks yet.